

10. Solidification Time in Casting [partial solutions]

A cylinder with a diameter-to-height ratio of 1 solidifies in 4 min during a sand-casting operation.

- What will be the solidification time if the cylinder height is tripled?

$$t \cong 6.6 \text{ min}$$

- What will be the solidification time if the cylinder diameter is tripled?

$$t \cong 13 \text{ min}$$

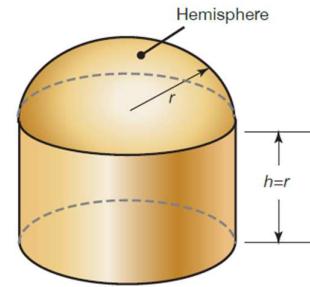
- It turns out that the optimum shape of a riser is spherical to ensure that it cools more slowly than the related casting. Spherically shaped risers, however, are difficult to cast.

- Sketch the shape of a blind riser that is easy to mold, but also has the smallest possible surface area-to-volume ratio.

Note. A closed or blind riser is a riser that is contained within the mold. It has no direct contact with the atmosphere.

A sketch of a blind riser that is easy to cast is shown here consisting of cylindrical and a hemispherical portion.

Note that the height of the cylindrical portion is equal to its radius (so that the total height of the riser is equal to its diameter).



- Compare the solidification time of the riser you designed to that of a riser shaped like a simple cylinder. Assume that the volume of each riser is the same ($V = V_s$, where V is the volume of a cylindrical riser with height equal to its radius and V_s the volume of your optimized riser).

Hint. Consider an arbitrary unity volume, $V = V_s = 1$ and remember that for both the radius-to-cylinder height ratio is equal to 1.

The volume V_s of this optimized, hemispherical riser is

$$V_s = \frac{5\pi r^3}{3} \equiv 1 \Rightarrow r = \left(\frac{3}{5\pi}\right)^{\frac{1}{3}}$$

The surface area of the optimized riser is $A_s = 5\pi r^2$.

Substituting for r , we find $A_s \cong 5.21$. Therefore, the solidification time for the blind riser will be

$$t_s \cong 0.037B$$

For a purely cylindrical riser of the same volume, we have

$$t \cong 0.013B$$

Thus, the optimized blind riser with hemispherical shape will cool three times slower while being easily casted (at least way easier than a fully spherical riser).

11. Turning a Ti-Alloy Rod [partial solutions]

A titanium-alloy rod of length $l = 150$ mm and diameter $\phi_i = 75$ mm is being radially reduced to a diameter $\phi_f = 65$ mm by turning on a lathe in one pass. The spindle rotates at $\nu_s = 400$ rpm and the tool is traveling at an axial velocity of $v_a = 200$ mm/min. Consider that the unit energy required has an average value of $E_{av} = 3.5$ W · s/mm³.

1. Calculate the material removal rate.

$$MRR = 2.2 \cdot 10^5 \text{ mm}^3/\text{min}$$

2. How long does it take for this machining operation to be completed?

$$t = 45 \text{ s}$$

3. What is the required power?

$$P \cong 13 \text{ kW}$$

4. What is the loading mode in the rod? Characterize and calculate the cutting force F_c .

The material is subjected to pure shear stress, and the cutting force is the tangential force exerted by the tool.

$$F_c \cong 8.9 \text{ kN}$$

12. Tool Wear with Ceramics *[partial solutions]*

Using the Taylor equation for tool wear and choosing the average value out of the possible n values for tools in ceramics, calculate the percentage increase in tool life if the cutting speed is reduced by (a) 30% and (b) 60%.

- (a) The new life LT_2 is 1.8 times the initial lifetime.
- (b) The new life LT_2 is 4.5 times the initial lifetime.

13. Drilling Holes in a Block of Magnesium [full solutions]

(Adapted from the final exam 2018)

A hole is being drilled in a block of magnesium alloy of thickness $t_b = 2$ cm, with a $\emptyset_d = 15$ mm drill in high-speed steel ($\sigma_{y,HSS} = 1000$ MPa, $E_{HSS} = 200$ GPa, $\nu_{HSS} = 0.29$) at a feed of $f = 0.20$ mm/rev. The spindle is running at $\nu_s = 500$ rpm.

Consider that the unit energy required has an average value of $E_{av} = 0.5$ W · s/mm³.

1. Express the *MRR* for a drill bit of diameter \emptyset_d , a feed rate f and spindle rotational speed ν_s .

The *MRR* can be calculated logically from the volume of matter removed per turn and at a certain rate:

$$MRR = \frac{\pi \emptyset_d^2}{4} f \nu_s$$

2. Calculate the *MRR*, and estimate the torque on the drill.

$$MRR = \frac{\pi 15^3}{4} \cdot 0.20 \cdot 500 \cong 1.8 \cdot 10^4 \text{ mm}^3/\text{min} \cong 300 \text{ mm}^3/\text{s}$$

Using the average specific energy for magnesium alloys, we find:

$$P = E_{av} \cdot MRR = 0.5 \cdot 300 = 150 \text{ W}$$

The power is the product of the torque on the drill and the rotation speed in radians per second, which, in this case is:

$$\omega = \frac{2\pi\nu_s}{60} = \frac{2\pi \cdot 500}{60} \cong 52.4 \text{ rad/s}$$

Which gives for the torque:

$$T = \frac{P}{\omega} = \frac{150}{52.4} \cong 2.86 \text{ N} \cdot \text{m}$$

3. Express and compute the angle of twist ϕ seen by the drill during the process as a function of the given parameters.

The maximum shear strain on the drill is $\gamma = \frac{\emptyset_d \phi}{L}$ where ϕ is the angle of twist and $L \geq t_b$ is the drill length.

The maximum shear stress on the drill is $\tau = \frac{\emptyset_d T}{J}$ where $J = \frac{\pi}{2} \left(\frac{\emptyset_d}{2} \right)^4$ is the second moment of area of the drill (assuming that the drill is a solid rod).

Now we can use Hooke's law in shear for the angle of twist:

$$\tau = G\gamma = G \frac{\emptyset_d \phi}{L} = \frac{\emptyset_d T}{J} \Rightarrow \phi = \frac{TL}{GJ} = \frac{64(1+\nu)}{\pi} \frac{TL}{E} \left(\frac{1}{\emptyset_d} \right)^4$$

Numerical application:

$$\phi = \frac{64(1+0.29)}{\pi} \frac{2.86 \cdot 2 \cdot 10^{-2}}{200 \cdot 10^9} \left(\frac{1}{15 \cdot 10^{-3}} \right)^4 \cong 1.48 \cdot 10^{-4} \text{ rad} \cong 0.00850^\circ$$